|
The Intel Core microarchitecture (previously known as the Next-Generation Micro-Architecture) is a multi-core processor microarchitecture unveiled by Intel in Q1 2006. It is based on the Yonah processor design and can be considered an iteration of the P6 microarchitecture, introduced in 1995 with Pentium Pro. The high power consumption and heat intensity, the resulting inability to effectively increase clock speed, and other shortcomings such as the inefficient pipeline were the primary reasons for which Intel abandoned the NetBurst microarchitecture and switched to completely different architectural design, delivering high efficiency through a small pipeline rather than high clock speeds. The Core microarchitecture never reached the clock speeds of the Netburst microarchitecture, even after moving to 45 nm lithography. The first processors that used this architecture were code-named 'Merom', 'Conroe', and 'Woodcrest'; Merom is for mobile computing, Conroe is for desktop systems, and Woodcrest is for servers and workstations. While architecturally identical, the three processor lines differ in the socket used, bus speed, and power consumption. Mainstream Core-based processors are branded ''Pentium Dual-Core'' or ''Pentium'' and low end branded ''Celeron''; server and workstation Core-based processors are branded ''Xeon'', while desktop and mobile Core-based processors are branded as ''Core 2''. Despite their names, processors sold as Core Solo/Core Duo and Core i3/i5/i7 do not actually use the Core microarchitecture and are based on the Enhanced Pentium M and newer Nehalem/Sandy Bridge/Haswell/Skylake microarchitectures, respectively. ==Features== The Core microarchitecture returned to lower clock rates and improved the usage of both available clock cycles and power when compared with the preceding NetBurst microarchitecture of the Pentium 4/D-branded CPUs.〔(【引用サイトリンク】url=http://www.extremetech.com/article2/0,1697,2208241,00.asp )〕 The Core microarchitecture provides more efficient decoding stages, execution units, caches, and buses, reducing the power consumption of Core 2-branded CPUs while increasing their processing capacity. Intel's CPUs have varied widely in power consumption according to clock rate, architecture, and semiconductor process, shown in the CPU power dissipation tables. Like the last NetBurst CPUs, Core based processors feature multiple cores and hardware virtualization support (marketed as Intel VT-x), as well as Intel 64 and SSSE3. However, Core-based processors do not have the Hyper-Threading Technology found in Pentium 4 processors. This is because the Core microarchitecture is a descendant of the P6 microarchitecture used by Pentium Pro, Pentium II, Pentium III, and Pentium M. The L1 cache size was enlarged in the Core microarchitecture, from 32 KB on Pentium II/III (16 KB L1 Data + 16 KB L1 Instruction) to 64 KB L1 cache/core (32 KB L1 Data + 32 KB L1 Instruction) on Pentium M and Core/Core 2. It also lacks an L3 Cache found in the Gallatin core of the Pentium 4 Extreme Edition, although an L3 Cache is present in high-end versions of Core-based Xeons. Both an L3 cache and Hyper-threading were reintroduced in the Nehalem microarchitecture. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Intel Core (microarchitecture)」の詳細全文を読む スポンサード リンク
|